Rate this post
“Bấm máy tính” là kỹ năng buộc phải có nếu như bạn muốn thi Đại học đạt điểm cao. Vì đề thi hiện nay là đề trắc nghiệm. Mà Trắc nghiệm thì không thể nào dành thời gian để giải 2 3 trang giấy được. Do đó, WElearn gia sư đã tổng hợp lại các cách giải toán 12 bằng máy tính Casio để giúp bạn có những phương pháp giải bài nhanh hơn. Cùng theo dõi nhé!
1. Một số quy tắc chung của máy tính
1.1. Những quy ước mặc định
- Các phím chữ trắng → Ấn trực tiếp
- Các phím chữ vàng → Ấn sau phím SHIFT
- Các phím chữ đỏ → Ấn sau ALPHA
1.2. Bấm các ký tự biến số
Bấm phím ALPHA phối hợp với các phím chứa biến
- Để gán một giá trị vào A
- Để truy xuất giá trị đã lưu trong A
1.3. Công cụ CALC
Phím CALC dùng để gán số vào một biểu thức
1.4. Công cụ SOLVE
Bấm tổng hợp phím SHIFT + CALC để tìm nghiệm
1.5. Công cụ TABLE – MODE 7
Table là công cụ để lập bảng giá trị. Thông qua công dụng Table, ta hoàn toàn có thể đoán và dò được các nghiệm của phương trình ở mức tương đối .
1.6. Các MODE thống kê giám sát
Chức năng MODE | Tên MODE | Thao tác |
Tính toán chung | COMP | MODE 1 |
Tính toán với số phức | CMPLX | MODE 2 |
Giải phương trình bậc 2, bậc 3, hệ phương trình bậc nhất 2, 3 ẩn | EQN | MODE 5 |
Lập bảng giá trị | TABLE | MODE 7 |
Xóa các MODE đã thiết lập | SHIFT 9 1 = = |
2. Cách giải toán 12 bằng máy tính Casio
2.1. Tính đạo hàm
2.2. Xét đồng biến nghịch biến
Phương pháp : Tính đạo hàm của hàm số tại các điểm đơn cử .
- Nếu giá trị đạo hàm ra âm thì hàm số nghịch biến
- Nếu giá trị đạo hàm ra dương thì hàm số đồng biến
2.3. Tìm cực trị của hàm số
Phương pháp : Đối với dạng toán tìm m để hàm số đạt cực trị tại x0. Ta có nguyên tắc
Như vậy, sẽ có 2 cách để bấm máy tính .
- Cách 1 : Gán giá trị m và biểu thức và tính đạo hàm tại x0 xem phương trình có đổi dấu không .
- Hàm số đạt cực lớn → Đổi dấu từ âm sang dương
- Hàm số đạt cực tiểu → Đổi dấu từ dương sang âm
- Cách 2 : Gán giá trị m vào biểu thức, tính f ’ ( x0 ) và f ’ ’ ( x0 ) để xem có thỏa điều kiện kèm theo bên dưới không .
2.4. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số bậc ba
Phương pháp: Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số có dạng
Bước 1 : Bấm MODE 2 để chuyển qua chính sách số phứcBước 2 : Nhập biểu thức
Bước 3 : Bấm “ = ” để lưu biểu thứcBước 4 : Bấm CALC để gán x = i ( để Open i, ta bầm ENG )Bước 5 : Nhận hiệu quả Mi + N => phương trình cần tìm có dạng y = Mx + N
2.5. Tìm tiệm cận
Dùng CALC để tìm tiệm cận → tính số lượng giới hạn
- Tìm tiệm cận đứng → cho mẫu bằng 0, giảng phương trình bậc 2
- Tìm tiệm cận ngang → tính số lượng giới hạn của phương trình
Bài giải :Đường thẳng x = x0 là tiệm cận ⇒ Điều kiện cần : x0 là nghiệm của phương trình mẫu⇒ Chỉ chăm sóc đến đường thằng x = 2, x = 3
Bài giảiĐể không có tiệm cận đứng thì phương trình mẫu khi bằng 0 sẽ không có nghiệm hoặc nếu có thì giá trị đạo hàm của x tiến tới không ra vô cùng
2.6. Tìm giá trị lớn nhất, nhỏ nhất
Sử dụng tính năng TABLE
Phương pháp :
- Nhập MODE 7
- f ( x ) = ( Nhập hàm số vào )
- Start ? → Nhập giá trị a
- End ? → Nhập giá trị b
- Step ? → Lấy ( a – b ) : 29
Quan sát bảng giá trị, giá trị lớn nhất là max, giá trị nhỏ nhất là minĐối với hàm lượng giác ( sin, cos, … ) thì đổi về radian bằng cách nhấn SHIFT MODE 4
Sử dụng tính năng SOLVE
Để tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = f ( x ) ta giải phương trình f ( x ) – m = 0 và f ( x ) – M = 0Sau khi tính ra x, nếu x thuộc đoạn đề bài nhu yếu → Chọn
Cách tìm nghiệm bằng công dụng SOLVE tuy lâu hơn nhưng sẽ chắc như đinh hơn .
2.7. Viết phương trình tiếp tuyến của đồ thị hàm số
Phương trình tiếp tuyến có dạng d : y = kx + m
2.8. Giải bài toán tương giao đồ thị
Phương pháp : Có 3 cách để giải bài toán tương giao đồ thị
- Dùng bảng giá trị MODE 7
- Giải phương trình MODE 5
- Dùng SHIFT SOLVE
Giải :
Để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt
⇒ Phương trình = 0 có 3 nghiệm
Với m = 14, sử dụng lệnh giải phương trình bậc 3 MODE 5
Ta thấy x2, x3 là nghiệm phức nên phương trình này không đủ 3 nghiệm → Loại AVới m = – 14, sử dụng lệnh giải phương trình bậc 3 MODE 5
Ta thấy phương trình này có 3 nghiệm thực. Vậy đáp án sẽ là B hoặc CThử m = – 1 ( trường hợp C ) thấy có nghiệm phức → Chọn B
2.9. Tìm nghiệm của phương trình
Phương pháp : Chuyển hết về 1 vế sau đó dùng công dụng SHIFT SOLVE
2.10. Tìm số nghiệm của phương trình mũ Logarit
Phương pháp
- Chuyển về dạng vế trái bằng 0
-
Sử dụng MODE 7 để lập bảng giá trị
- Quan sát và nhìn nhận
- Nếu f ( x ) = 0 thì x là một nghiệm
- F ( a ). F ( b ) = 0 thì phương trình có 1 nghiệm thuộc ( a ; b )
Quan sát bảng giá trị và thấy không có giá trị nào để F ( x ) = 0 hoặc không có khoảng chừng nào làm cho F ( x ) đổi dấu nên x = 0 là nghiệm duy nhất
2.11. Tìm nghiệm bất phương trình mũ – logarit .
Phương pháp :
- Chuyển bất phương trình về dạng: VT 0 hoặc VT 0
- Sử dụng công dụng CALC hoặc MODE 7 để xét dấu các khoảng chừng nghiệm
Lưu ý :
- Nếu phương trình có tập nghiệm khoảng chừng ( a, b ) thì phương trình đúng với mọi giá trị thuộc ( a, b )
- Nếu khoảng (a,b) và khoảng (c,d) đều đúng với mọi giá trị, trong đó (a,b) ( c, d ) thì tập nghiệm là ( c, d )
Tương tự vậy, kiểm tra thì thấy đáp án B, C, D cùng thỏa. Vậy đáp án là D
2.12. Tính giá trị biểu thức mũ logarit
Phương pháp :
- Tính giá trị và gán vào A, B, C
- Lấy biểu thức sau cuối trừ đi các đáp án. Nếu bằng 0 → Chọn
Bài giải :
Từ ⇒ y =12log9x. Thay y vào . Ta có
12log9x) = 0
Dùng công dụng SHIFT SOLVE để tìm x → thay x vào để tìm y
2.13. Tìm số chữ số của một lũy thừa
Số N được gọi là phần nguyên của một số nếu . Ký hiệu N = [A]
→ Phím Int : ALPHA +Số chữ số của 1 số ít nguyên dương [ log A ] + 1
Ví dụ: Gọi m là số chữ số cần dùng khi viết số trong hệ thập phân và n là số chữ số cần dùng khi viết số 30 ở trong hệ nhị phân. Ta có tổng m + m là
A. 18 B. 20 C. 19 D. 21
Giải: Đặt
Số chữ số của trong hệ thập phân là [k] + 1
Vậy Số chữ số của trong hệ thập phân là 10
Đặt 302=900=2h. Số chữ số của trong hệ thập phân là [h] + 1
Vậy Số chữ số của trong hệ thập phân là 10 => m + n = 20
2.14. Tính nguyên hàm
Phương pháp :
- Tìm giá trị hàm số tại một điểm thuộc TXĐ
- Tính đạo hàm tại điểm đó .
2.15. Tính tích phân và các ứng dụng tích phân
Phương pháp : Tính giá trị tích phân bằng nút
2.16. Tìm phần thực, phần âo, Môđun, Argument, số phức phối hợp
Phương pháp
- Chế độ số phức : MODE 2 → CMPLX
- Tính Modul : SHIFT hyp
- Tính số phức phối hợp : SHIFT 2 2
- Tính Acgument : SHIFT 2 1
2.17. Tìm căn bậc hai số phức
Phương pháp
- Cách 1 : Để máy ở chính sách MODE 2 → Bình phương đáp án
- Cách 2 : Để máy ở chính sách MODE 2
- Nhập z để lưu và Ans
- Nhập vào màn hình hiển thị
- Nhấn “ = ” để được 1 trong 2 căn bậc 2 của z. Căn bậc 2 còn lại ta đổi dấu phần thực và phần ảo
2.18. Chuyển số phức về dạng lượng giác
Bài giải :
- Bật chính sách MODE 2 .
- Nhập số phức vào màn hình hiển thị .
- Nhấn SHIFT 2 3 .
- Chuyển qua radian bấm SHIFT MODE 4
2.19. Biểu diễn hình học của số phức. Tìm quỹ tích điểm màn biểu diễn số phức
Đặt z = x + yi, trình diễn số phức theo nhu yếu đề bài, từ đó khử i và thu về một hệ thức mới :
- Nếu hệ thức có dạng Ax + By + C = 0 thì tập hợp điểm là đường thẳng
- Nếu hệ thức có dạng+=thì tập hợp điểm là đường tròn tâm I ( a ; b ) nửa đường kính R
- Nếu hệ thức có dạng= 1 thì tập hợp điểm có dạng | một Elip
- Nếu hệ thức có dạngthì tập hợp điểm là một Hyperbol
- Nếu hệ thức có dạng y =+ Bx + C thì tập hợp điểm là một Parabol
Tìm điểm đại diện thay mặt thuộc quỹ tích cho 4 đáp án rồi thế ngược vào đề bài, nếu thỏa mãn nhu cầu thì là đúngVí dụ : Cho số phức z thỏa ( 1 + i ) z = 3 – i. Điểm trình diễn z thuộc điểm nàoA.điểm P B.điểm Q C.điểm M D.điểm N
Bài giải :
x = 1, y = – 2 → Điểm Q.
2.20 .Tìm số phức, giải phương trình số phức
Phương pháp :Nếu phương trình cho sẵn nghiệm thì thay từng đáp ánNếu là phương trình thuần bậc 2 bậc 3 thì giải như giải phương trìnhNếu phương trình chưa z, | z |, … thì dùng CALC gán X = 100, Y = 0,01
2.21 .Giải phương trình số phức dùng chiêu thức lặp Newton
Phương pháp :Nhập một số ít bất kể sau đó ấn bằng để lưu vào AnsBấm công thức theo cú pháp sau :
Bấm dấu “ = ” tới khi nào thấy tác dụng là một nghiệm
Tìm nghiệm dựa vào hệ thức Viet: = c/a
2.22. Tính tích vô hướng có hướng vecto
Phương pháp :
- Chế độ Vecto : MODE 8
- Nhập thông số kỹ thuật vecto : MODE 8 1
- Tích vô hướng của 2 vecto : vecto A SHIFT 5 7 vecto B
- Tích có hướng của 2 vecto : vecto A vecto B
- Tính giá trị tuyệt đối : SHIFT HYP
Nhập MODE 8. Khi đó màn hình hiển thị máy tính sẽ Open nhā sau :
Nhập tài liệu cho từng vecto. Chọn 1 để nhập cho vecto A
Chọn 1 để chọn tọa độ Oxyz
Nhập vecto A bấm “ 1 = 2 = 3 ” .Để nhập tiếp tài liệu cho vecto B thì bấm : MODE 8 2 1 3 = 2 = 1
Tính tích có hướng của vecto A và B bấm như sau : AC SHIFT 5 3 SHIFT 5 4
Tính tích vô hướng của hai vecto A và B bấm như sau : AC SHIFT 5 3 SHIFT 5 7 SHIFT 5 4
Nếu muốn tính thêm vecto C thì tương tự như bạn nhập giá trị cho vecto C theo các công thức trên
Tính tích hỗn tạp
Xem thêm: Hướng dẫn cách giải Rubik 4×4 cơ bản
Như vậy, bài viết đã giúp bạn tổng hợp Tất Tần Tật Cách Giải Toán 12 Bằng Máy Tính Không Thể Bỏ Qua. Hy vọng những kiến thức mà bài viết chia sẻ có thể giúp bạn “giải quyết” các bài toán cách nhanh chóng và gọn gàng hơn.
Xem thêm các bài viết liên quan
Source: https://vietsofa.vn
Category : Góc học tập
+ There are no comments
Add yours