Phương trình bậc 2 một ẩn và cách giải đúng bạn cần biết

Estimated read time 11 min read

4.5 / 5 – ( 16 votes )
Trong toán học, phương trình và hệ phương trình là những phần quan trọng có trong chương trình học, giúp học sinh giải được nhiều bài toán khó và liên hệ tốt với thực tiễn. Qua bài viết sau đây, hãy cùng Toppy tìm hiểu về phương trình bậc 2 một ẩn cùng với cách giải đúng của loại phương trình này nhé.

Thế nào là phương trình một ẩn?

Để hiểu rõ hơn về phương trình bậc 2 1 ẩn, hãy cùng khám phá khái niệm về phương trình 1 ẩn nhé .

Phương trình là gì?

Phương trình là một thuật ngữ trong toán học, dùng để chỉ 2 biểu thức bằng nhau. Khi trình diễn phương trình, các bạn cần viết 2 biểu thức vế trái và vế phải cùng với một dấu “ = ’ ’ ở giữa .

Phương trình một ẩn là gì?

Phương trình một ẩn là một phương trình chỉ chứa một biến duy nhất ở 2 vế trái và vế phải. Dạng phương trình một ẩn này được nối với nhau bởi dấu “ ‘ = ”. Phương trình một ẩn hoàn toàn có thể có nhiều bậc khác nhau như bậc 1, bậc 2 và bậc 3, …

Phương trình bậc 2 một ẩn

Phương trình bậc 2 1 ẩn còn được gọi tắt là phương trình bậc hai. Phương trình bậc 2 1 ẩn được viết dưới dạng : ax2 + bx + c = 0. Trong dạng tổng quát này, a, b và c là 3 số đã được cho trước, a ≠ 0 và x là ẩn số của phương trình .
Một số ví dụ về các phương trình bậc hai có chứa một ẩn :

  • 2 x2+ 3 x + 7 = 0
  • 3 x2+ 8 x + 5 = 0
  • 2 x2+ 5 x + 7 = 0

Để giải dạng phương trình này, các bạn cần tìm tập nghiệm của phương trình bậc 2 chứa ẩn đó. Phương trình bậc 2 chứa một ẩn là kiến thức được đưa vào chương trình học toán 9. Do đó chuyên đề phương trình bậc hai một ẩn lớp 9 là những kiến thức mà học sinh cần phải nắm vững. Nhờ vậy, các bạn học sinh mới có thể tiếp cận được nhiều dạng bài tập phức tạp hơn.
Một số ví dụ phương trình bậc hai một ẩn

Công thức nghiệm của phương trình bậc 2 một ẩn

Để giải phương trình bậc 2 1 ẩn tốt nhất, bạn cần phải nắm được kỹ năng và kiến thức về công thức nghiệm của phương trình này .
Cho phương trình bậc 2 chứa 1 ẩn có dạng : ax2 + bx + c = 0 ( a ≠ 0 ). Trước tiên, ta xét biệt thức Δ = b2 – 4 ac. Sau đó nghiên cứu và phân tích 3 trường hợp sau đây :

  • Trường hợp 1 : Δ < 0 ⇒ phương trình vô nghiệm .
  • Trường hợp 2 : Δ = 0 ⇒ phương trình chứa nghiệm kép.
  • Trường hợp 3 : Δ > 0 ⇒ phương trình có chứa 2 nghiệm phân biệt (và nghiệm).

Công thức nghiệm của phương trình bậc 2 1 ẩn

Một số dạng toán về phương trình bậc 2 1 ẩn thường gặp

Tiếp theo, hãy cùng nghiên cứu và phân tích một số ít dạng toán thường gặp tương quan đến phương trình bậc 2 chứa một ẩn các bạn nhé. Trong chương trình học, các bạn sẽ liên tục gặp phải 4 dạng toán cơ bản .
Những dạng toán thường gặp

Dạng 1: Nhận biết phương trình

Dạng bài tập phổ biến nhất mà bạn thường được gặp là nhận biết phương trình bậc hai một ẩn. Khi gặp bài tập này, bạn chỉ cần phải nắm chắc định nghĩa là đã có thể giải đáp nhanh chóng.
Phương trình bậc 2 có chứa một ẩn sẽ có dạng : ax2 + bx + c = 0. Trong đó : x là ẩn số, a, b, c là các số thực với điều kiện kèm theo là a ≠ 0 .

Dạng 2: Giải phương trình có sử dụng công thức nghiệm

Dạng bài tập thứ 2 các bạn học viên sẽ thường được gặp phải là giải phương trình bậc 2 có chứa một ẩn và được phép sử dụng công thức nghiệm ..
Phương pháp giải của dạng toán này là xét phương trình bậc hai ax2 + bx + c = 0, tính Δ = b2 – 4 ac sau đó xét 3 trường hợp của Δ .

  • Nếu Δ < 0 thì phương trình đã cho trong đề bài là phương trình vô nghiệm .
  • Nếu Δ = 0 thì phương trình đã cho là phương trình có chứa nghiệm kép với
  • Nếu Δ > 0 thì phương trình đã cho là phương trình có chứa 2 nghiệm phân biệt với nghiệmvà nghiệm.

Sau khi tìm được nghiệm đúng của phương trình trải qua công thức nghiệm, bạn chỉ cần Tóm lại nghiệm là đã triển khai xong đáp án cho bài toán .

Dạng 3: Giải phương trình không sử dụng công thức nghiệm

Dạng bài tập thứ 3 mà các bạn sẽ thường được bắt gặp là giải phương trình nhưng không sử dụng công thức nghiệm. Có 2 cách giải phương trình bậc 2 một ẩn đối với yêu cầu này:

  • Đưaphương trình bậc hai một ẩnvề dưới dạng một phương trình tích .
  • Đưa vế trái của phương trình thành một bình phương, vế còn lại của phương trình cũng là bình phương hoặc là một số ít .

Dạng 4: Xác định số nghiệm

Xác định số nghiệm cũng là một dạng bài tập thường gặp so với phương trình bậc hai có chứa một ẩn. Phương trình ax2 + bx + c = 0 và có Δ = b2 – 4 ac .

  • Với a ≠ 0 và Δ > 0 thì phương trình có 2 nghiệm phân biệt .
  • Với a ≠ 0 và Δ = 0 thì phương trình có nghiệm kép .
  • Với a ≠ 0 và Δ < 0 thì phương trình vô nghiệm .

Trong chương trình toán học, phương trình bậc 2 một ẩn là một kiến thức vô cùng quan trọng mà các bạn học sinh cần phải nắm vững để biết cách giải nhiều phương trình phức tạp hơn. Để tìm hiểu thêm về Toán và nhiều bộ môn khác, hãy truy cập ngay vào trang web https://vietsofa.vn/ nhé.

Xem thêm:

Giải pháp toàn diện giúp con đạt điểm 9-10 dễ dàng cùng Toppy

Với tiềm năng lấy học viên làm TT, Toppy chú trọng việc thiết kế xây dựng cho học viên một lộ trình học tập cá thể, giúp học viên nắm vững cơ bản và tiếp cận kiến thức và kỹ năng nâng cao nhờ mạng lưới hệ thống nhắc học, thư viện bài tập và đề thi chuẩn khung năng lượng từ 9 lên 10 .

Kho học liệu khổng lồ
Kho video bài giảng, nội dung minh họa sinh động, dễ hiểu, kết nối học viên vào hoạt động giải trí tự học. Thư viên bài tập, đề thi nhiều mẫu mã, bài tập tự luyện phân cấp nhiều trình độ. Tự luyện – tự chữa bài giúp tăng hiệu suất cao và rút ngắn thời hạn học. Kết hợp phòng thi ảo ( Mock Test ) có giám thị thật để sẵn sàng chuẩn bị sẵn sàng chuẩn bị và tháo gỡ nỗi lo về bài thi IELTS .
Học online cùng ToppyNền tảng học tập thông minh, không giới hạn, cam kết hiệu quả
Chỉ cần điện thoại cảm ứng hoặc máy tính / máy tính là bạn hoàn toàn có thể học bất kỳ khi nào, bất kể nơi đâu. 100 % học viên thưởng thức tự học cùng TOPPY đều đạt hiệu quả như mong ước. Các kỹ năng và kiến thức cần tập trung chuyên sâu đều được cải tổ đạt hiệu suất cao cao. Học lại không lấy phí tới khi đạt !

Tự động thiết lập lộ trình học tập tối ưu nhất

Lộ trình học tập cá nhân hóa cho mỗi học viên dựa trên bài kiểm tra đầu vào, hành vi học tập, kết quả luyện tập (tốc độ, điểm số) trên từng đơn vị kiến thức; từ đó tập trung vào các kỹ năng còn yếu và những phần kiến thức học viên chưa nắm vững.

Trợ lý ảo và Cố vấn học tập Online đồng hành hỗ trợ xuyên suốt quá trình học tập

Kết hợp với ứng dụng AI nhắc học, nhìn nhận học tập mưu trí, cụ thể và đội ngũ tương hỗ vướng mắc 24/7, giúp kèm cặp và động viên học viên trong suốt quy trình học, tạo sự yên tâm phó thác cho cha mẹ .

You May Also Like

More From Author

+ There are no comments

Add yours