✅ Cách giải nhanh bất phương trình bậc 2 ⭐️⭐️⭐️⭐️⭐

Estimated read time 14 min read

3/5 – ( 6 bầu chọn )

Bất phương trình quy về bậc hai

Tam thức bậc hai

– Tam thức bậc hai so với x là biểu thức có dạng f ( x ) = ax2 + bx + c, trong đó a, b, c là những thông số, a ≠ 0 .
* Ví dụ: Hãy cho biết đâu là tam thức bậc hai.
a ) f ( x ) = x2 – 3 x + 2
b ) f ( x ) = x2 – 4
c ) f ( x ) = x2 ( x-2 )
° Đáp án: a) và b) là tam thức bậc 2.

1. Dấu của tam thức bậc hai

Nhận xét: 

* Định lý: Cho f(x) = ax2 + bx + c, Δ = b2 – 4ac.
– Nếu Δ < 0 thì f ( x ) luôn cùng dấu với thông số a với mọi x ∈ R . – Nếu Δ = 0 thì f ( x ) luôn cùng dấu với thông số a trừ khi x = - b / 2 a . – Nếu Δ>0 thì f(x) luôn cùng dấu với hệ số a khi x < x1 hoặc x > x2 ; trái dấu với hệ số a khi x1 < x < x2 trong đó x1,x2 (với x1
[ Gợi ý cách nhớ dấu của tam thức khi có 2 nghiệm : Trong trái ngoài cùng ]

Cách xét dấu của tam thức bậc 2

– Tìm nghiệm của tam thức
– Lập bảng xét dấu dựa vào dấu của thông số a
– Dựa vào bảng xét dấu và Kết luận

Bất phương trình bậc hai một ẩn ax2 + bx + c > 0 (hoặc ≥ 0; < 0; ≤ 0)

– Bất phương trình bậc 2 ẩn x là bất phương trình có dạng ax2 + bx + c < 0 ( hoặc ax2 + bx + c ≤ 0 ; ax2 + bx + c > 0 ; ax2 + bx + c ≥ 0 ), trong đó a, b, c là những số thực đã cho, a ≠ 0 .

* Ví dụ: x2 – 2 >0; 2×2 +3x – 5 <0;

Giải bất phương trình bậc 2

– Giải bất phương trình bậc hai ax2 + bx + c < 0 thực ra là tìm các khoảng chừng mà trong đó f ( x ) = ax2 + bx + c cùng dấu với thông số a ( trường hợp a < 0 ) hoặc trái dấu với thông số a ( trường hợp a > 0 ) .
Để giải BPT bậc hai ta vận dụng định lí về dấu của tam thức bậc hai .
Ví dụ: Giải bất phương trình

Mẫu thức là tam thức bậc hai có hai nghiệm là 2 và 3
Dấu của f(x) được cho trong bảng sau

Tập nghiệm của bất phương trình đã cho là

Từ đó suy ra tập nghiệm của hệ là S = ( − 1 ; 1/3 )

3. Phương trình – Bất phương trình chứa ẩn trong dấu GTTĐ

Để giải phương trình, bất phương trình chứa ẩn trong dấu GTTĐ, ta thường sử dụng định nghĩa hoặc đặc thù của GTTĐ để khử dấu GTTĐ .

4. Phương trình – Bất phương trình chứa ẩn trong dấu căn

Trong các dạng toán thì bất phương trình chứa căn được xem là dạng toán khó nhất. Để giải phương trình, bất phương trình chứa ẩn trong dấu căn ta cầ sử dụng kết hợp các công thức giải bất phương trình lớp 10 kết hợp với phép nâng luỹ thừa hoặc đặt ẩn phụ để khử dấu căn.

Bất phương trình quy về bậc nhất

Giải và biện luận bpt dạng ax + b < 0

1.1. Hệ bất phương trình bậc nhất một ẩn

Muốn giải hệ bất phương trình bậc nhất một ẩn ta giải từng bất phương trình của hệ rồi lấy giao các tập nghiệm thu sát hoạch được .

1.2. Dấu nhị thức bậc nhất

2. Bất phương trình tích

∙ Dạng : P ( x ). Q ( x ) > 0 ( 1 ) ( trong đó P ( x ), Q. ( x ) là những nhị thức bậc nhất. )
∙ Cách giải : Lập bxd của P ( x ). Q ( x ). Từ đó suy ra tập nghiệm của ( 1 ) .

3. Bất phương trình chứa ẩn ở mẫu


Chú ý : Không nên quy đồng và khử mẫu .

4. Bất phương trình chứa ẩn trong dấu GTTĐ

∙ Tương tự như giải pt chứa ẩn trong dấu GTTĐ, ta hay sử dụng định nghĩa và đặc thù của GTTĐ để khử dấu GTTĐ .

Bài tập giải bất phương trình lớp 10

Các bài tập về xét dấu tam thức bậc 2, bất phương trình bậc 2 một ẩn

° Dạng 1: Xét dấu của tam thức bậc 2

* Ví dụ 1 (Bài 1 trang 105 SGK Đại Số 10): Xét dấu các tam thức bậc hai:
a ) 5×2 – 3 x + 1
b ) – 2×2 + 3 x + 5
c ) x2 + 12 x + 36
d ) ( 2 x – 3 ) ( x + 5 )
Lời giải ví dụ 1 (Bài 1 trang 105 SGK Đại Số 10):
a ) 5×2 – 3 x + 1
– Xét tam thức f ( x ) = 5×2 – 3 x + 1
– Ta có : Δ = b2 – 4 ac = 9 – 20 = – 11 < 0 nên f ( x ) cùng dấu với thông số a . – Mà a = 5 > 0 ⇒ f ( x ) > 0 với ∀ x ∈ R .
b ) – 2×2 + 3 x + 5
– Xét tam thức f ( x ) = – 2×2 + 3 x + 5
– Ta có : Δ = b2 – 4 ac = 9 + 40 = 49 > 0 .
– Tam thức có hai nghiệm phân biệt x1 = – 1 ; x2 = 5/2, thông số a = – 2 < 0 – Ta có bảng xét dấu :
f ( x ) > 0 khi x ∈ ( – 1 ; 5/2 ) – Từ bảng xét dấu ta có :
f ( x ) = 0 khi x = – 1 ; x = 5/2
f ( x ) < 0 khi x ∈ ( – ∞ ; – 1 ) ∪ ( 5/2 ; + ∞ ) c ) x2 + 12 x + 36 – Xét tam thức f ( x ) = x2 + 12 x + 36 – Ta có : Δ = b2 – 4 ac = 144 – 144 = 0 . – Tam thức có nghiệm kép x = – 6, thông số a = 1 > 0 .
– Ta có bảng xét dấu :

– Từ bảng xét dấu ta có :
f ( x ) > 0 với ∀ x ≠ – 6
f ( x ) = 0 khi x = – 6
d ) ( 2 x – 3 ) ( x + 5 )
– Xét tam thức f ( x ) = 2×2 + 7 x – 15
– Ta có : Δ = b2 – 4 ac = 49 + 120 = 169 > 0 .
– Tam thức có hai nghiệm phân biệt x1 = 3/2 ; x2 = – 5, thông số a = 2 > 0 .
– Ta có bảng xét dấu :

– Từ bảng xét dấu ta có :
f ( x ) > 0 khi x ∈ ( – ∞ ; – 5 ) ∪ ( 3/2 ; + ∞ )
f ( x ) = 0 khi x = – 5 ; x = 3/2
f ( x ) < 0 khi x ∈ ( – 5 ; 3/2 ) * Ví dụ 2 (Bài 2 trang 105 SGK Đại Số 10): Lập bảng xét dấu của biểu thức
a ) f ( x ) = ( 3×2 – 10 x + 3 ) ( 4 x – 5 )
b ) f ( x ) = ( 3×2 – 4 x ) ( 2×2 – x – 1 )
c ) f ( x ) = ( 4×2 – 1 ) ( – 8×2 + x – 3 ) ( 2 x + 9 )
d ) f ( x ) = [ ( 3×2 – x ) ( 3 – x2 ) ] / [ 4×2 + x – 3 ]
° Lời giải ví dụ 2 (Bài 2 trang 105 SGK Đại Số 10):
a ) f ( x ) = ( 3×2 – 10 x + 3 ) ( 4 x – 5 )
– Tam thức 3×2 – 10 x + 3 có hai nghiệm x = 1/3 và x = 3, thông số a = 3 > 0 nên mang dấu + nếu x < 1/3 hoặc x > 3 và mang dấu – nếu 1/3 < x < 3 . – Nhị thức 4 x – 5 có nghiệm x = 5/4 . – Ta có bảng xét dấu :
– Từ bảng xét dấu ta có :
f ( x ) > 0 khi x ∈ ( 1/3 ; 5/4 ) ∪ x ∈ ( 3 ; + ∞ )
f ( x ) = 0 khi x ∈ S = { 1/3 ; 5/4 ; 3 }
f ( x ) < 0 khi x ∈ ( – ∞ ; 1/3 ) ∪ ( 5/4 ; 3 ) b ) f ( x ) = ( 3x2 – 4 x ) ( 2x2 – x – 1 ) – Tam thức 3x2 – 4 x có hai nghiệm x = 0 và x = 4/3, thông số a = 3 > 0 .
⇒ 3×2 – 4 x mang dấu + khi x < 0 hoặc x > 4/3 và mang dấu – khi 0 < x < 4/3 . + Tam thức 2x2 – x – 1 có hai nghiệm x = – 1/2 và x = 1, thông số a = 2 > 0
⇒ 2×2 – x – 1 mang dấu + khi x < – 1/2 hoặc x > 1 và mang dấu – khi – 1/2 < x < 1 . – Ta có bảng xét dấu :
– Từ bảng xét dấu ta có :
f ( x ) > 0 ⇔ x ∈ ( – ∞ ; – 1/2 ) ∪ ( 0 ; 1 ) ∪ ( 4/3 ; + ∞ )
f ( x ) = 0 ⇔ x ∈ S = { – 50% ; 0 ; 1 ; 4/3 }
f ( x ) < 0 ⇔ x ∈ ( – 50% ; 0 ) ∪ ( 1 ; 4/3 ) c ) f ( x ) = ( 4x2 – 1 ) ( – 8x2 + x – 3 ) ( 2 x + 9 ) – Tam thức 4x2 – 1 có hai nghiệm x = – 1/2 và x = 1/2, thông số a = 4 > 0
⇒ 4×2 – 1 mang dấu + nếu x < – 1/2 hoặc x > 1/2 và mang dấu – nếu – 1/2 < x < 1/2 – Tam thức – 8x2 + x – 3 có Δ = – 47 < 0, thông số a = – 8 < 0 nên luôn luôn âm . – Nhị thức 2 x + 9 có nghiệm x = – 9/2 . – Ta có bảng xét dấu :
– Từ bảng xét dấu ta có :
f ( x ) > 0 khi x ∈ ( – ∞ ; – 9/2 ) ∪ ( – 1/2 ; 50% )
f ( x ) = 0 khi x ∈ S = { – 9/2 ; – 1/2 ; 1/2 }
f ( x ) < 0 khi x ∈ ( – 9/2 ; – 1/2 ) ∪ ( 50% ; + ∞ ) d ) f ( x ) = [ ( 3x2 – x ) ( 3 – x2 ) ] / [ 4x2 + x – 3 ] – Tam thức 3x2 – x có hai nghiệm x = 0 và x = 1/3, hệ số a = 3 > 0.

⇒ 3×2 – x mang dấu + khi x < 0 hoặc x > 1/3 và mang dấu – khi 0 < x < 1/3 . – Tam thức 3 – x2 có hai nghiệm x = √ 3 và x = – √ 3, thông số a = – 1 < 0 ⇒ 3 – x2 mang dấu – khi x < – √ 3 hoặc x > √ 3 và mang dấu + khi – √ 3 < x < √ 3 . – Tam thức 4x2 + x – 3 có hai nghiệm x = – 1 và x = 3/4, thông số a = 4 > 0 .
⇒ 4×2 + x – 3 mang dấu + khi x < – 1 hoặc x > 3/4 và mang dấu – khi – 1 < x < 3/4 . – Ta có bảng xét dấu :
– Từ bảng xét dấu ta có :
f ( x ) > 0 ⇔ x ∈ ( – √ 3 ; – 1 ) ∪ ( 0 ; 1/3 ) ∪ ( 3/4 ; √ 3 )
f ( x ) = 0 ⇔ x ∈ S = { ± √ 3 ; 0 ; 1/3 }
f ( x ) < 0 ⇔ x ∈ ( – ∞ ; – √ 3 ) ∪ ( – 1 ; 0 ) ∪ ( 1/3 ; 3/4 ) ∪ ( √ 3 ; + ∞ ) f ( x ) không xác lập khi x = - 1 và x = 3/4 .

Dạng 2: Giải các bất phương trình bậc 2 một ẩn

* Ví dụ 1 (Bài 3 trang 105 SGK Đại Số 10): Giải các bất phương trình sau
a ) 4×2 – x + 1 < 0 b ) - 3x2 + x + 4 ≥ 0
d ) x2 – x – 6 ≤ 0
° Lời giải ví dụ 1 (bài 3 trang 105 SGK Đại Số 10):
a ) 4×2 – x + 1 < 0 – Xét tam thức f ( x ) = 4x2 – x + 1 – Ta có : Δ = - 15 < 0 ; a = 4 > 0 nên f ( x ) > 0 ∀ x ∈ R
⇒ Bất phương trình đã cho vô nghiệm .
b ) – 3×2 + x + 4 ≥ 0
– Xét tam thức f ( x ) = – 3×2 + x + 4
– Ta có : Δ = 1 + 48 = 49 > 0 có hai nghiệm x = – 1 và x = 4/3, thông số a = – 3 < 0 . ⇒ f ( x ) ≥ 0 khi - 1 ≤ x ≤ 4/3. ( Trong trái dấu a, ngoài cùng dấu với a ) ⇒ Tập nghiệm của bất phương trình là : S = [ - 1 ; 4/3 ]
– Điều kiện xác lập : x2 – 4 ≠ 0 và 3×2 + x – 4 ≠ 0
⇔ x ≠ ± 2 và x ≠ 1 ; x ≠ 4/3 .
– Chuyển vế và quy đồng mẫu chung ta được :

– Nhị thức x + 8 có nghiệm x = – 8
– Tam thức x2 – 4 có hai nghiệm x = 2 và x = – 2, thông số a = 1 > 0
⇒ x2 – 4 mang dấu + khi x < - 2 hoặc x > 2 và mang dấu – khi – 2 < x < 2 . – Tam thức 3x2 + x – 4 có hai nghiệm x = 1 và x = - 4/3, thông số a = 3 > 0 .
⇒ 3×2 + x – 4 mang dấu + khi x < - 4/3 hoặc x > 1 mang dấu – khi – 4/3 < x < 1 . – Ta có bảng xét dấu như sau :
– Từ bảng xét dấu ta có :
( * ) < 0 ⇔ x ∈ ( – ∞ ; – 8 ) ∪ ( - 2 ; - 4/3 ) ∪ ( 1 ; 2 ) d ) x2 – x – 6 ≤ 0 – Xét tam thức f ( x ) = x2 – x – 6 có hai nghiệm x = - 2 và x = 3, thông số a = 1 > 0
⇒ f ( x ) ≤ 0 khi – 2 ≤ x ≤ 3 .
⇒ Tập nghiệm của bất phương trình là : S = [ – 2 ; 3 ] .

° Dạng 3: Xác định tham số m thỏa điều kiện phương trình

* Ví dụ 1 (Bài 4 trang 105 SGK Đại Số 10): Tìm các giá trị của tham số m để các phương trình sau vô nghiệm
a ) ( m – 2 ) x2 + 2 ( 2 m – 3 ) x + 5 m – 6 = 0
b ) ( 3 – m ) x2 – 2 ( m + 3 ) x + m + 2 = 0
° Lời giải ví dụ 1 (bài 4 trang 105 SGK Đại Số 10):
a ) ( m – 2 ) x2 + 2 ( 2 m – 3 ) x + 5 m – 6 = 0 ( * )
• Nếu m – 2 = 0 ⇔ m = 2, khi đó phương trình ( * ) trở thành :
2 x + 4 = 0 ⇔ x = – 2 hay phương trình ( * ) có một nghiệm
⇒ m = 2 không phải là giá trị cần tìm .
• Nếu m – 2 ≠ 0 ⇔ m ≠ 2 ta có :
Δ ’ = b ’ 2 – ac = ( 2 m – 3 ) 2 – ( m – 2 ) ( 5 m – 6 )
= 4 mét vuông – 12 m + 9 – 5 mét vuông + 6 m + 10 m – 12
= – mét vuông + 4 m – 3 = ( – m + 3 ) ( m – 1 )
– Ta thấy ( * ) vô nghiệm ⇔ Δ ’ < 0 ⇔ ( - m + 3 ) ( m – 1 ) < 0 ⇔ m ∈ ( - ∞ ; 1 ) ∪ ( 3 ; + ∞ ) – Vậy với m ∈ ( - ∞ ; 1 ) ∪ ( 3 ; + ∞ ) thì phương trình vô nghiệm . b ) ( 3 – m ) x2 – 2 ( m + 3 ) x + m + 2 = 0 ( * ) • Nếu 3 – m = 0 ⇔ m = 3 khi đó ( * ) trở thành - 6 x + 5 = 0 ⇔ x = 5/6 ⇒ m = 3 không phải là giá trị cần tìm . • Nếu 3 – m ≠ 0 ⇔ m ≠ 3 ta có : Δ ’ = b ’ – ac = ( m + 3 ) 2 – ( 3 – m ) ( m + 2 ) = mét vuông + 6 m + 9 – 3 m – 6 + mét vuông + 2 m = 2 mét vuông + 5 m + 3 = ( m + 1 ) ( 2 m + 3 ) – Ta thấy ( * ) vô nghiệm ⇔ Δ ’ < 0 ⇔ ( m + 1 ) ( 2 m + 3 ) < 0 ⇔ m ∈ ( - 3/2 ; - 1 ) – Vậy với m ∈ ( - 3/2 ; - 1 ) thì phương trình vô nghiệm . Bài 53 (trang 145 sgk Đại Số 10 nâng cao): Giải các bất phương trình
a ) – 5×2 + 4 x + 12 < 0 b ) 16x2 + 40 x + 25 < 0 c ) 3x2 – 4 x + 4 ≥ 0 d ) x2 – x – 6 ≤ 0 Lời giải:

b ) Tam thức 16×2 + 40 x + 25 có :
∆ ’ = 202 – 16.25 = 0 và thông số a = 16 > 0
Do đó ; 16×2 + 40 x + 25 ≥ 0 ; ∀ x ∈ R
Suy ra, bất phương trình 16×2 + 40 x + 25 < 0 vô nghiệm Vậy S = ∅ c ) Tam thức 3x2 – 4 x + 4 có ∆ ’ = ( - 2 ) 2 – 4.3 = - 10 < 0 Hệ số a = 3 > 0
Do đó, 3×2 – 4 x + 4 ≥ 0 ; ∀ x ∈ R
Vậy tập nghiệm của bất phương trình đã cho là S = R .
d ) Tam thức x2 – x – 6 có hai nghiệm là 3 và – 2
Hệ số a = 1 > 0 do đó, x2 – x – 6 khi và chỉ khi – 2 ≤ x ≤ 3
Do đó, tập nghiệm của bất phương trình đã cho là S = [ – 2 ; 3 ] .
Lời giải:
a ) Tập nghiệm T = ( – ∞ ; – 6/5 ) ∪ ( 2 ; + ∞ )
b ) Bất phương trình vô nghiệm vì Δ ‘ < 0 và a = 16 > 0
c ) Tập nghiệm là R vì 3×2 – 4 x + 4 có Δ ‘ < 0 và thông số a = 3 > 0
d ) Tập nghiệm T = [ – 2 ; 3 ]
Bài 56 (trang 145 sgk Đại Số 10 nâng cao): Giải các bất phương trình :

Lời giải:




Bài 55 (trang 145 sgk Đại Số 10 nâng cao): Tìm các giá trị của m để mỗi phương trình sau đây có nghiệm.
a ) ( m-5 ) x2-4mx+m-2 = 0
b ) ( m + 1 ) x2 + 2 ( m-1 ) x + 2 m – 3 = 0
Lời giải:
a )
+ ) khi m – 5 = 0 ⇒ m = 5 phương trình trở thành :
– 20 x + 3 = 0 ⇒ x = 3/20
+ ) khi m – 5 ≠ 0 ⇒ m ≠ 5, phương trình có nghiệm khi và chỉ khi :
Δ ’ = ( – 2 m ) 2 – ( m – 2 ) ( m – 5 ) ≥ 0
⇒ 4 mét vuông – ( m2-5m-2m+10 ) ≥ 0 ⇒ 4 mét vuông – mét vuông + 7 m – 10 ≥ 0

Do đó, m = – 1 thỏa mãn nhu cầu đầu bài .
+ Trường hợp 2 : Nếu m ≠ – 1, để phương trình đã cho có m nghiệm khi và chỉ khi :

Bài 54 (trang 145 sgk Đại Số 10 nâng cao): Giải các bất phương trình sau:

Lập bảng xét dấu :

Do đó, tập nghiệm của bất phương trình đã cho là :
S = ( – ∞ ; 1 ) ∪ ( 7 ; + ∞ )
b ) Ta có :

* Lại có : – x2 + 4 x – 3 = 0 ⇔ x = 1 ; x = 3
Và x2 – 3 x – 10 = 0 ⇔ x = 5 ; x = – 2
+ Ta có bảng xét dấu :

Do đó, tập nghiệm của bất phương trình đã cho là :
S = ( – ∞ ; – 2 ) ∪ [ 1 ; 3 ] ∪ ( 5 ; + ∞ )
c ) Ta có : 2 x + 1 = 0 ⇔ x = – 50%
x2 + x – 30 = 0 ⇔ x = 5 và x = – 6
Ta có bảng xét dấu :

Do đó, tập nghiệm của bất phương trình đã cho là:










1. Bài tập về Bất Phương Trình:

Bài 1/ BPT bậc nhất

1.1. Giải các bất phương trình sau:




You May Also Like

More From Author

+ There are no comments

Add yours