Dạng toán 1. Xác định miền nghiệm của bất phương trình và hệ bất phương trình bậc nhất hai ẩn.
Ví dụ 1. Xác định miền nghiệm của các bất phương trình sau:
a) $2x-y\ge 0.$
b) $\frac{x-2y}{2}>\frac{2x+y+1}{3}.$
a) Trong mặt phẳng tọa độ, vẽ đường thẳng $\left( d \right):\text{ 2}x-y=0$, ta có $\left( d \right)$ chia mặt phẳng thành hai nửa mặt phẳng.
Chọn một điểm bất kì không thuộc đường thẳng đó, chẳng hạn điểm$M\left( 1;0 \right)$, ta thấy $(1; 0)$ là nghiệm của bất phương trình đã cho.
Vậy miền nghiệm cần tìm là nửa mặt phẳng chứa bờ $(d)$ và chứa điểm $M\left( 1;0 \right)$ (miền không được tô màu trên hình vẽ).
Bạn đang đọc: Xác định miền nghiệm của bất phương trình và hệ bất phương trình bậc nhất hai ẩn – Sách Toán – Học toán
b) Ta có $\frac{x-2y}{2}>\frac{2x-y+1}{3}$ $\Leftrightarrow 3\left( x-2y \right)-2\left( 2x-y+1 \right)>0$ $\Leftrightarrow -x-4y-2>0$ $\Leftrightarrow x+4y+2<0.$
Trong mặt phẳng tọa độ, vẽ đường thẳng $\Delta :x+4y+2=0.$
Xét điểm $\text{O}\left( 0;0 \right)$, ta thấy $\left( 0;0 \right)$ không phải là nghiệm của bất phương trình đã cho do đó miền nghiệm cần tìm là nửa mặt phẳng bờ $\Delta $ (không kể đường thẳng $\Delta $) và không chứa điểm $\text{O}\left( 0;0 \right)$ (miền không được tô màu trên hình vẽ).
Ví dụ 2. Xác định miền nghiệm của các hệ bất phương trình sau:
a) $\left\{ \begin{matrix}
x+y-2\ge 0 \\
x-3y+3\le 0 \\
\end{matrix} \right.$
b) $\left\{ \begin{align}
& x+y>0 \\
& 2x-3y+6>0 \\
& x-2y+1\ge 0 \\
\end{align} \right.$
adsense
a) Vẽ các đường thẳng $\left( d \right):x+y-2=0$, $\left( d’ \right):x-3y+3=0$ trên mặt phẳng tọa độ $Oxy.$
Xét điểm $\text{O}\left( 0;0 \right)$, thấy $\left( 0;0 \right)$ không phải là nghiệm của bất phương trình $x+y-2\ge 0$ và $x-3y+3\le 0.$
Do đó miền nghiệm cần tìm là phần mặt phẳng không được tô màu trên hình vẽ kể cả hai đường thẳng $\left( d \right)$ và $\left( d’ \right).$
b) Vẽ các đường thẳng $\left( d \right):x+y=0$, $\left( d’ \right):2x-3y+6=0$ và $\left( d” \right):x-2y+1=0$ trên mặt phẳng tọa độ $Oxy.$
Xét điểm $\text{O}\left( 0;0 \right)$, thấy $\left( 0;0 \right)$ là nghiệm của bất phương trình $2x-3y+6>0$ và $x-2y+1\ge 0.$
Do đó $\text{O}\left( 0;0 \right)$ thuộc miền nghiệm của bất phương trình $2x-3y+6>0$ và $x-2y+1\ge 0.$
Xét điểm $M\left( 1;0 \right)$ ta thấy $\left( 1;0 \right)$ là nghiệm của bất phương trình $x+y>0$ do đó điểm $M\left( 1;0 \right)$ thuộc miền nghiệm bất phương trình $x+y>0.$
Vậy miền nghiệm cần tìm là phần mặt phẳng không được tô màu trên hình vẽ kể cả đường thẳng $\left( d” \right).$
Ví dụ 3. Xác định miền nghiệm bất phương trình $\left( x-y \right)\left( {{x}^{3}}+{{y}^{3}} \right)\ge 0.$
Ta có $\left( x-y \right)\left( {{x}^{3}}+{{y}^{3}} \right)\ge 0$ $\Leftrightarrow \left( x-y \right)\left( x+y \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)\ge 0$ $\Leftrightarrow \left( x-y \right)\left( x+y \right)\ge 0$ $\Leftrightarrow \left\{ \begin{matrix}
x-y\ge 0 \\
x+y\ge 0 \\
\end{matrix} \right.$ $(1)$ hoặc $\left\{ \begin{matrix}
x-y\le 0 \\
x+y\le 0 \\
\end{matrix} \right.$ $(2).$
Như vậy miền nghiệm của bất phương trình đã cho là gồm hai miền nghiệm của hệ bất phương trình $(1)$ và $(2).$
Vẽ các đường thẳng $\left( d \right):x+y=0$, $\left( d’ \right):x-y=0$ trên mặt phẳng tọa độ $Oxy.$
Xét điểm $M\left( 1;0 \right)$, ta có $\left( 1;0 \right)$ là nghiệm của các bất phương trình của hệ $(1)$ do đó $M\left( 1;0 \right)$ thuộc miền nghiệm của hệ bất phương trình $(1).$
Xét điểm $N\left( -1;0 \right)$, ta có $\left( -1;0 \right)$ là nghiệm của các bất phương trình của hệ $(2)$ do đó $N\left( -1;0 \right)$ thuộc miền nghiệm của hệ bất phương trình $(2).$
Vậy miền nghiệm cần tìm là phần mặt phẳng không được tô màu trên hình vẽ kể cả hai đường thẳng $\left( d \right)$, $\left( d’ \right).$
Source: https://vietsofa.vn
Category : Góc học tập
+ There are no comments
Add yours