Định nghĩa phương trình bậc nhất một ẩn
Phương trình dạng \(ax + b = 0,\)với a và b là hai số đã cho và \(a \ne 0,\) được gọi là phương trình bậc nhất một ẩn.
Bạn đang đọc: “>Lý thuyết phương trình bậc nhất một ẩn và cách giải>
Quy tắc chuyển vế: Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.
Quy tắc nhân với một số: Trong một phương trình, ta có thể:
– Nhân cả hai vế với cùng một số ít khác USD 0. $- Chia cả hai vế cho cùng một số ít khác USD 0. $Phương trình dạng \ ( ax + b = 0 \ ) với \ ( a \ ne 0 \ ) luôn có một nghiệm duy nhất \ ( x = – \ dfrac { b } { a }. \ )
Cách giải phương trình bậc nhất một ẩn
Bước 1: Chuyển vế \(ax = -b\)
Bước 2: Chia hai vế cho \(a\) ta được: \(x = \dfrac{-b}{a}\)
Bước 3: Kết luận nghiệm: \(S = \left \{ \dfrac{-b}{a} \right \}\)
Tổng quát phương trình \(ax+b=0\) (với \(a\ne0\)) được giải như sau:
\ ( ax + b = 0 \ Leftrightarrow ax = – b \ Leftrightarrow x = \ dfrac { – b } { a } \ )Vậy phương trình có một nghiệm duy nhất là \ ( x = \ dfrac { – b } { a } \ )
Chú ý:
Cho phương trình \ ( ax + b = 0 \ ) \ ( \ left ( 1 \ right ). \ )
+ Nếu \ ( \ left \ { \ begin { array } { l } a = 0 \ \ b = 0 \ end { array } \ right. \ ) thì phương trình \ ( \ left ( 1 \ right ) \ ) có vô số nghiệm
+ Nếu \ ( \ left \ { \ begin { array } { l } a = 0 \ \ b \ ne 0 \ end { array } \ right. \ ) thì phương trình \ ( \ left ( 1 \ right ) \ ) vô nghiệm
+ Nếu \ ( a \ ne 0 \ ) phương trình \ ( \ left ( 1 \ right ) \ ) có nghiệm duy nhất \ ( x = – \ dfrac { b } { a } \ ) .
2. Các dạng toán thường gặp
Dạng 1: Nhận dạng phương trình bậc nhất một ẩn
Phương pháp:
Ta sử dụng định nghĩa : Phương trình dạng \ ( ax + b = 0, \ ) với a và b là hai số đã cho và \ ( a \ ne 0, \ ) được gọi là phương trình bậc nhất một ẩn .
Dạng 2: Giải và biện luận phương trình bậc nhất một ẩn.
Phương pháp:
Ta dùng các quy tắc chuyển vế và quy tắc nhân với một số ít để giải phương trình .Biện luận phương trình bậc nhất một ẩn :Cho phương trình \ ( ax + b = 0 \ ) \ ( \ left ( 1 \ right ) \ ) .+ Nếu \ ( \ left \ { \ begin { array } { l } a = 0 \ \ b = 0 \ end { array } \ right. \ ) thì phương trình \ ( \ left ( 1 \ right ) \ ) có vô số nghiệm+ Nếu \ ( \ left \ { \ begin { array } { l } a = 0 \ \ b \ ne 0 \ end { array } \ right. \ ) thì phương trình \ ( \ left ( 1 \ right ) \ ) vô nghiệm+ Nếu \ ( a \ ne 0 \ ) thì phương trình \ ( \ left ( 1 \ right ) \ ) có nghiệm duy nhất \ ( x = – \ dfrac { b } { a } \ ) .
Dạng 3: Giải các phương trình quy về phương trình bậc nhất một ẩn
Phương pháp:
Cách giải phương trình đưa được về dạng USD ax + b = 0 USD :* Nếu phương trình có mẫu số thì ta triển khai các bước :+ Quy đồng mẫu hai vế+ Nhân hai vế với mẫu chung để khử mẫu+ Chuyển các hạng tử chứa ẩn sang một vế, các hằng số sang vế kia
+ Thu gọn và giải phương trình nhận được.
* Nếu phương trình không chứa mẫu thì ta sử dụng các quy tắc chuyển vế, quy tắc nhân, phá ngoặc và sử dụng hằng đẳng thức để đổi khác .* Nếu phương trình có chứa dấu giá trị tuyệt đối thì ta phá dấu giá trị tuyệt đối hoặc sử dụng\ ( \ left | A \ right | = m \, \, \ left ( { m \ ge 0 } \ right ) \ Leftrightarrow \ left [ \ begin { array } { l } A = m \ \ A = – m \ end { array } \ right. \ ) .
Source: https://vietsofa.vn
Category : Góc học tập
+ There are no comments
Add yours