Bảng công thức nguyên hàm đầy đủ, chi tiết
Bảng công thức nguyên hàm đầy đủ, chi tiết
Bài giảng: Cách làm bài tập nguyên hàm và phương pháp tìm nguyên hàm của hàm số cực nhanh – Cô Nguyễn Phương Anh (Giáo viên VietJack)
Quảng cáo
Bạn đang đọc: Bảng công thức nguyên hàm đầy đủ, chi tiết – Toán lớp 12
I. Định nghĩa, công thức Nguyên hàm
1. Định nghĩa
Cho hàm số f ( x ) xác lập trên K ( K là khoảng chừng, đoạn hay nửa khoảng chừng ). Hàm số F ( x ) được gọi là nguyên hàm của hàm số f ( x ) trên K nếu F ‘ ( x ) = f ( x ) với mọi x ∈ K. Kí hiệu: ∫ f(x)dx = F(x) + C.
Định lí 1:
1 ) Nếu F ( x ) là một nguyên hàm của f ( x ) trên K thì với mỗi hằng số C, hàm số G ( x ) = F ( x ) + C cũng là một nguyên hàm của f ( x ) trên K .2 ) Nếu F ( x ) là một nguyên hàm của hàm số f ( x ) trên K thì mọi nguyên hàm của f ( x ) trên K đều có dạng F ( x ) + C, với C là một hằng số .Do đó F ( x ) + C ; C ∈ R là họ toàn bộ những nguyên hàm của f ( x ) trên K.
2. Tính chất của nguyên hàm
• (∫ f(x)dx)’ = f(x) và ∫ f'(x)dx = f(x) + C.
• Nếu F(x) có đạo hàm thì: ∫d(F(x)) = F(x) + C).
• ∫ kf(x)dx = k∫ f(x)dx với k là hằng số khác 0.
• ∫[f(x) ± g(x)]dx = ∫ f(x)dx ± ∫g(x)dx.
3. Sự tồn tại của nguyên hàm
Định lí:
Mọi hàm số f ( x ) liên tục trên K đều có nguyên hàm trên K .
4. Bảng nguyên hàm các hàm số thường gặp
II. Một số phương pháp tìm nguyên hàm
Quảng cáo
1. Phương pháp đổi biến
1.1. Đổi biến dạng 1
a. Định nghĩa.
Cho hàm số u = u(x) có đạo hàm liên tục trên K và hàm số y = f(u) liên tục sao cho f[u(x)] xác định trên K. Khi đó, nếu F là một nguyên hàm của f, tức là: ∫ f(u)du = F(u) + C thì:
∫ f[u(x)]u'(x)dx = F[u(x)] + C
b. Phương pháp giải
Bước 1: Chọn t = φ(x). Trong đó φ(x) là hàm số mà ta chọn thích hợp.
Bước 2: Tính vi phân hai vế: dt = φ'(t)dt.
Bước 3: Biểu thị: f(x)dx = f[φ(t)]φ'(t)dt = g(t)dt.
Bước 4: Khi đó: I = ∫ f(x)dx = ∫g(t)dt = G(t) + C.
1.2. Phương pháp đổi biến loại 2
a. Định nghĩa:
Cho hàm số f ( x ) liên tục trên K ; x = φ ( t ) là một hàm số xác lập, liên tục trên K và có đạo hàm là φ ‘ ( t ). Khi đó, ta có :∫ f(x)dx = ∫ f[φ(t)].φ'(t)dt
b. Phương pháp chung
Bước 1: Chọn x = φ( t), trong đó φ(t) là hàm số mà ta chọn thích hợp.
Bước 2: Lấy vi phân hai vế: dx = φ'(t)dt.
Bước 3: Biến đổi: f(x)dx = f[φ(t)]φ'(t)dt = g(t)dt.
Bước 4: Khi đó tính: ∫ f(x)dx = ∫g(t)dt = G(t) + C.
c. Các dấu hiệu đổi biến thường gặp
Quảng cáo
2. Phương pháp nguyên hàm từng phần
a. Định lí
Nếu u ( x ), v ( x ) là hai hàm số có đạo hàm liên tục trên K :∫u(x).v'(x)dx = u(x).v(x) – ∫v(x).u'(x)dx
Hay ∫udv = uv – ∫vdu
(với du = u'(x)dx, dv = v'(x)dx)
b. Phương pháp chung
Bước 1: Ta biến đổi tích phân ban đầu về dạng: I = ∫ f(x)dx = ∫ f1(x).f2(x)dx
Bước 2: Đặt:
Bước 3: Khi đó: ∫u.dv = u.v – ∫v.du
c. Các dạng thường gặp
Dạng 1
Dạng 2
Dạng 3
Bằng phương pháp tương tự ta tính được sau đó thay vào I.
Xem thêm những dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác :
Giới thiệu kênh Youtube VietJack
Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com
nguyen-ham-tich-phan-va-ung-dung.jsp
Source: https://vietsofa.vn
Category : Góc học tập
+ There are no comments
Add yours