Cách tính bán kính đường tròn ngoại tiếp tam giác cực hay, chi tiết
Cách tính bán kính đường tròn ngoại tiếp tam giác cực hay, chi tiết
A. Phương pháp giải
Phương pháp 1: Sử dụng đinh lý sin trong tam giác
Cho tam giác ABC có BC = a, CA = b và AB = c, R là bán kính đường tròn ngoại tiếp tam giác ABC. Khi đó:
Phương pháp 2: Sử dụng diện tích tam giác
Phương pháp 3: Sử dụng trong hệ tọa độ
– Tìm tọa độ tâm O của đường tròn ngoại tiếp tam giác ABC- Tìm tọa độ một trong ba đỉnh A, B, C ( nếu chưa có )- Tính khoảng cách từ tâm O tới một trong ba đỉnh A, B, C, đây chính là bán kính cần tìmR = OA = OB = OC .
Phương pháp 4: Sử dụng trong tam giác vuông (kiến thức lớp 9)
Tâm đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền, do đó bán kính đường tròn ngoại tiếp tam giác vuông chính bằng nửa độ dài cạnh huyền .
B. Ví dụ minh họa
Ví dụ 1: Cho tam giác ABC có góc B bằng 45° và AC = 4. Tính bán kính đường tròn ngoại tiếp tam giác ABC.
Hướng dẫn giải:
Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC .Ta có : b = AC = 4Áp dụng định lý sin trong tam giác ABC ta có :
Ví dụ 2: Cho tam giác ABC có AB = 3, AC = 5 và BC = 6. Tính bán kính đường tròn ngoại tiếp tam giác ABC.
Hướng dẫn giải:
Theo công thức Hê – rông, diện tích quy hoạnh tam giác ABC là :
Bán kính đường tròn ngoại tiếp tam giác ABC là :
Ví dụ 3: Cho tam giác MNP có MN = 6, MP = 8 và PN = 10. Tính bán kính đường tròn ngoại tiếp tam giác MNP.
Hướng dẫn giải:
Ví dụ 4: Cho tam giác ABC có BC = 10. Gọi (I) là đường tròn có tâm I thuộc cạnh BC và tiếp xúc với các cạnh AB, AC lần lượt tại M và N. Biết đường tròn (I) có bán kính bằng 3 và 2IB = 3IC. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Hướng dẫn giải:
+ Vì 2IB = 3IC
+ Vì M và N lần lượt là tiếp điểm của đường tròn tâm I với AB và AC
+ Mặt khác theo định lý Cô – sin trong tam giác ABC ta có :
Ví dụ 5: Cho tam giác ABC vuông tại A có AB = 1; AC = 4. Gọi M là trung điểm AC.
a ) Tính diện tích quy hoạnh tam giác ABC.b ) Tính bán kính R1 của đường tròn ngoại tiếp tam giác ABC .c ) Tính bán kính R2 của đường tròn ngoại tiếp tam giác CBM .
Hướng dẫn giải:
a ) Tam giác ABC vuông tại A, nên diện tích quy hoạnh tam giác ABC là :
b ) Tam giác ABC vuông tại A, theo định lý Pytago ta có
BM2 = AB2 + AM2 = 12 + 22 = 5 (tam giác AMB vuông tại A)
Bán kính đường tròn ngoại tiếp tam giác CMB là :
Xem thêm các dạng bài tập Toán lớp 10 tinh lọc, có đáp án hay khác khác :
Đã có giải thuật bài tập lớp 10 sách mới :
Giới thiệu kênh Youtube VietJack
Ngân hàng trắc nghiệm lớp 10 tại khoahoc.vietjack.com
Đã có app VietJack trên điện thoại cảm ứng, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi trực tuyến, Bài giảng …. không tính tiền. Tải ngay ứng dụng trên Android và iOS .
Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
tich-vo-huong-cua-hai-vecto-va-ung-dung.jsp
Giải bài tập lớp 10 sách mới các môn học
Source: https://vietsofa.vn
Category : Góc học tập
+ There are no comments
Add yours